Exercise Sheet 13

Discussed on 21.07.2021

Definition. Let K be a field, V a K-vector space and $P: V \rightarrow K$ a map. We say that P is polynomial if for any $n \geq 0$ and any vectors $v_{1}, \ldots, v_{n} \in V$ the map

$$
K^{n} \rightarrow K, \quad\left(x_{1}, \ldots, x_{n}\right) \mapsto P\left(x_{1} v_{1}+\cdots+x_{n} v_{n}\right)
$$

is given by a polynomial, i.e. by an element of $K\left[T_{1}, \ldots, T_{n}\right]$.
Lemma. Let K be an infinite field, V a K-vector space and $P: V \rightarrow K$ a map. Then P is polynomial if and only if for all $v, w \in V$ the map

$$
K \rightarrow K, \quad x \mapsto P(v+x w)
$$

is given by a polynomial.
Problem 1. Let X be an abelian variety of dimension g over some field k.
(a) Let $\varphi, \psi \in \operatorname{End}(X)$ and let L be a line bundle on X. Show that there are line bundles L_{0}, L_{1}, L_{2} on X such that for all $n \in \mathbb{Z}$ we have

$$
(\psi+n \varphi)^{*} L=L_{0} \otimes L_{1}^{n} \otimes L_{2}^{n(n-1) / 2}
$$

Hint: Apply the Theorem of the Cube with $f=\psi+n \varphi, g=h=\varphi$ and induct on n.
(b) Show that deg: $\operatorname{End}(X) \rightarrow \mathbb{Z}$ extends to a polynomial function on $\operatorname{End}^{0}(X)=\operatorname{End}(X) \otimes_{\mathbb{Z}} \mathbb{Q}$ (here $\operatorname{deg} \varphi=0$ if φ is not surjective).
Hint: Fix an ample line bundle L on X and recall that for every $\varphi \in \operatorname{End}(X)$ we have $\operatorname{deg}(\varphi)=\left(\varphi^{*} L\right)^{g} /(L)^{g}$, where $(L)^{g}$ denotes the intersection product of g copies of L. Now apply (a).
(c) For every prime ℓ, define the ℓ-adic Tate module $T_{\ell} X$ of X. Show that the natural map

$$
\mathbb{Z}_{\ell} \otimes_{\mathbb{Z}} \operatorname{End}(X) \hookrightarrow \operatorname{End}\left(T_{\ell} X\right)
$$

is injective. Deduce that $\operatorname{End}(X)$ has rank $\leq 4 g^{2}$.
Hint: Apply the same proof strategy as for elliptic curves. The hard bit is to show the following: If $M \subset \operatorname{End}(X)$ is a finitely generated subgroup then $\mathbb{Q} M \cap \operatorname{End}(X)$ is again finitely generated over \mathbb{Z}. To prove this, first reduce to the case that X is simple, so that every $\varphi \in \operatorname{End}(X)$ is an isogeny. Then use (b) to deduce that $\mathbb{Q} M \cap \operatorname{End}(X) \subset \mathbb{Q} M$ is discrete.

